
Inhomogeneous differential approximants for power series

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 1677

(http://iopscience.iop.org/0305-4470/12/10/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 10, 1979. Printed in Great Britain 

Inhomogeneous differential approximants for power series 

Michael E Fisher and Helen Au-Yang 
Baker Laboratory, Cornel1 University, Ithaca, New York 14853, USA 

Received 21 November 1978 

Abstract. Inhomogeneous differential approximants [J/L;  MI’(,), [J/L;  M, N]f(r.yfr etc are 
definedfor functions of one or more variables given as power series expansions, and some of 
their properties are exposed. The approximants are easily computable, and numerical 
studies are reported (for single-variable series) which demonstrate their utility in circum- 
stances where the customary direct or logarithmic derivative Pad6 approximants (which are 
limiting cases) are inadequate. 

1. Introduction 

Given a function f ( x )  defined through its power series 

it is well known that a method of approximating the function on the basis of a restricted 
number of coefficients (say f i  for i s I), which is effective in a number of circumstances, 
is to calculate direct Pad6 approximants [ L / M ] f  for L + M  6 1  (see e.g. Baker 1975, 
Fisher 1974). Likewise for a function of two variables, f ( x ,  y),  with power series 
coefficients f i i 8 ,  direct two-variable approximants, sometimes called Canterbury 
approximants, may be defined (Chisholm 1973, Chisholm and Roberts 1976). 
However, if, as in many practical applications, the function exhibits a branch point of 
the form 

f(x) -x/xJY, (1.2) 
with y positive and non-integral in the region of interest, direct Pad6 approximants to 
f(x) cannot be effective and, in particular, they do not yield accurate estimates of the 
branch or ‘critical’ point xo of the exponent y, or of the amplitude A. In such 
circumstances, following Baker (Baker 1975, Fisher 1974), recourse is normally had to 
the so-called ‘D log Pad6 technique’, in which the series for D(x) = (d/dx) log f ( x )  is 
formed from (l.l), and the Pad6 approximants [L/MID lopf are calculated. This 
approach is often very effective and has had great successes. 

However, the D log Pad6 technique does have a number of practical drawbacks. 
Whereas the ratio method of extrapolating series expansions, applicable when fi > 0 (all 
i )  (see e.g. Fisher 1974), is obviously invariant to alterations in the first few coefficients, 
f o ,  fi, . . . , the D log Pad6 approach has no such invariance: indeed a transformation 
such as {fo =$ fo+ 2, fi + fl - 3) will typically result in a serious degradation in the 
accuracy of approximation. In addition, although not really independently, the D log 
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1678 M E  Fisher and H Au- Yang 

Pade method often performs poorly when the exponent y is small (say y = 0.1 to 0.4). 
The reason, frequently, is simply that the representation (1.2) is inadequate, in that a 
significant constant or ‘background’ term B should be added to the right-hand side: in 
such a case one finds 

d 
D(x)  = - logf(x) =- 

dx x - x c  (1.3) 

The leading pole may be accurately represented by an [L/MID loofapproximant, but the 
branch cut implied by the correction term cannot be well approximated: if B / A  is large 
and y small, this can have a very strong effect. 

Evidently, then, there is a need for a technique of approximation which can handle 
effectively functions such as 

f(x) =A(x) l ( l  - X / X , ) ~  +B(x), (1.4) 

where A(x) and B(x) are analytic in the branch point or critical region x E X , :  in 
particular, if B(x)  may be a low-order polynomial, it can clearly represent exactly 
changes in the first few coefficients fi. 

The situation for functions of two variables is analogous. The expected behaviour in 
the vicinity of a multisingular point (xc, yc),  which replaces (1.2), for functions of two 
variables is 

AA? =Ax - Ay/e2, AY = Ay -elAx, i 1.6) 

where Ax = x - x,, Ay = y - yc + 0, while y is the principal exponent and q5 the ‘cross- 
over exponent’; el  and e2 are the slopes of the ‘scaling axes’, and Z ( z )  is the ‘scaling 
function’ normalised, say, as Z ( 0 )  = x,’ (Fisher 1977, Fisher and Kerr 1977). Again, 
direct two-variable or Canterbury approximants are not effective in representingf(x, y j 
in the neighbourhood of a multisingular point or in estimating the crucial parameters xc,  
yc, y, q5, el,  e2, A, and the function Z ( z ) .  However, in this case it has been demonstrated 
(Fisher 1977, Fisher and Kerr 1977) that an effective method of approximation is to 
calculate ‘partial differential approximants’, FL:M.N(x, y )  = [ L ;  M, N ] f ,  which satisfy an 
equation of the form 

11.7) 

Here PL, QM and RN are polynomials in x and y with coefficients p ~ ,  qmm, and rnn* with 
labels drawn from sets L 3 ( I ,  l’),  etc; the coefficients are to be chosen (by solving linear 
algebraic equations) so that the power series solution of (1.7), for appropriate boundary 
conditions, matches the known expansion in (1.5) as far as possible (i.e. on powers x k y  k ‘  

with (k, k’) drawn from some maximal label set K). 
This approach has been used successfully (Fisher and Kerr 1977), but in practice one 

must again anticipate the presence of a background term B(x, y )  on the right-hand side 
of (1.5). Such a term will cause computational difficulties if it is relatively large or if y is 
small. More generally, the amplitude A should be replaced by a function A(x, y )  
analytic near (x,, yc), and one would like to allow A i  and AY to be multiplied by 
functions g ( x ,  y )  and h(x ,  y),  likewise analytical and non-vanishing in the multisingular 
region. As a matter of fact, it was the disturbing occurrence of such a background term 
in an ongoing study of two-variable functions representing magnetic bicritical 

PL(x, Y F = Q M ( x ,  Y )  ( a F / a x ) + R ~ ( x ,  Y )  ( a F / a ~ ) .  
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behaviour (Fisher and Kerr 1977) that led us to the present considerations for functions 
of both one and two variables. (For the interested reader we remark that the 
backgrounds occurred in the subsidiary multisingular points representing pure Ising 
and XY critical behaviour; thus in the total magnetic susceptibility ,y = +$,yL, which 
is the best function to consider at the Heisenberg multisingular point, one sees that in a 
region of Ising-like behaviour, where only ,y11 diverges, the term $,y1 contributes a finite 
but relatively large and unavoidable background.) 

It should perhaps be mentioned at this point (see also Fisher 1977, Fisher and Kerr 
1977) that the partial differential equation (1.7) represents, from one viewpoint, a very 
natural generalisation to functions of two variables of the one-variable D log Pad6 
technique. Thus, as observed by Gammel (1973) and Gaunt and, independently, by 
Guttmann and Joyce (1972), the D log approximant [L/MID may be regarded as 
providing for the approximation of f ( x )  by the solution F L ; ~ ( x )  of an ordinary linear 
homogeneous differential equation of the form (1.7), but with RN = 0 and with PL and 
QM polynomials in the single variable x .  Gammel and, in effect, Guttmann and Joyce 
called attention to the possibility of using more general differential equations to provide 
approximants to f ( x ) .  Indeed, it is in this direction that the problem we have posed may 
be answered as we now show. (See also Baker and Moussa (1978) and Baker and 
Hunter (1978).) 

2. Inhomogeneous differential approximants 

To approach the problem of approximating effectively a function f ( x )  of the form (1.4) 
let us calculate the derivative f ( x )  = df/dx and eliminate the factor (1 - X / X , ) ’ .  One 
then sees that f ( x )  is equal to the solution of the differential equation 

U(x)  +P(x)F(x)  = Q ( x )  (dF/dx), (2.1) 

which satisfies the initial condition F(0)  = f(0) = fo, provided the coefficient functions 
are given by 

U ( X )  = (x ,  -x)A(x)B’(x)  - [ ~ A ( x )  + (x ,  - x)A’(x)]B(x),  

P (x )  = ~ A ( x )  + (x ,  - x)A’(x), Q ( x )  = (x, - x )A(x). 
(2.2) 

To ensure uniqueness we should also assume that x = 0 is a regular point of the 
equation, i.e. Q(0) # 0. Note furthermore that, if A(x) and B ( x )  are polynomials, then 
so are V(x) ,  P ( x )  and Q ( x ) .  If the background B ( x )  vanishes, then so does V(x);  
conversely, if f ( x )  satisfies the homogeneous equation (with U = 0), then for any added 
background term there is a corresponding U(x)  such that that inhomogeneous equation 
is satisfied by the new f ( x ) .  

These considerations naturally suggest the definition of an inhomogeneous differen - 
tial approximant, which may be denoted FJ,L:M(x) = [J/L; M ] f ,  as the solution of the 
equation 

U J ( X )  +PL(x)F(x) = (@/dx), (2.3) 

with initial condition F(0) =f(O) = f ~ ,  where the polynomial coefficient functions 
UJ(x) = uix’, etc are chosen so that the power series expansion of the solution F ( x )  
agrees with (1.1) as far as possible and, in particular, at least to order x ~ + ~ + ~ + ~  ; in 

J 
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addition, the normalisation condition 

PL(0) = P o  = 1, (2.4) 

or, better in some circumstances, QM(0) = qo = 1, is imposed. 
Such first-order linear inhomogeneous approximants were proposed explicitly by 

Gammel (1973) and are implicit in the ideas of Guttmann and Joyce (1972), although 
they studied (via a ‘recursion relation’ approach) only homogeneous cases. More 
recently Rehr er a1 (1979) also mention the inhomogeneous case explicitly but do not 
explore its properties. However, after completing the work reported here, we learned 
that Baker and Hunter (1979) have independently studied the [ J / L ;  MIf  approximants 
as defined above, although our viewpoints and applications have been complementary. 
The notation introduced above agrees with Baker and Hunter; however, they proposed 
the terminology ‘integral approximants’, since f(x) is approximated by an integral curve 
of a differential equation. Note that, if QM is chosen to vanish identically, which may be 
denoted by the ‘empty set’ symbol 0, one has [ J / L ;  01, [J/L]f,  i.e. the approximant 
reduces to an ordinary direct Pad6 approximant. Conversely, if VJ is chosen to vanish, 
one has [ 0 / L ;  MIf  = [L/MID so that the standard D log Pad6 approximant is 
recaptured. Thus the inhomogeneous approximants interpolate in a rather natural way. 

The proposed notation extends naturally as [ J / L ;  M; NI, etc to cover cases in which 
a second-order derivative term RN (x)(d2F/dx2), etc is included, as discussed 
specifically by Guttmann and Joyce (1972, also Rehr et a1 1979) in order to allow for 
possible confluent singularities. 

In addition, we similarly propose inhomogeneous partial differential approximants, 
denoted Fj/L;M,N(x, y )  = [J /L;  M, NIf, which, by analogy with (1.7), are solutions of 

UJ(X, Y ) + ~ L ( x ,  Y ) F = Q M ( ~ ,  Y )  (aF/ax)+Riv(x, Y )  (aF/dy ) ,  (2.5) 

which satisfy appropriate boundary conditions and whose series expansions match that 
in (1.5) on powers x k y k ’  with (k, k’)  in a maximal label set K. Again, a normalisation 
condition PL(O, 0) = poo = 1 will normally be appropriate; likewise, the polynomial 
coefficients ujj,, pIl. ,  qmmr and rf l f l f  may be computed by solving linear algebraic equations. 

We note specifically that a function f(x, y )  of the form 

satisfies (2.5) for general Z ( r )  if A, B, g and h are polynomials and 

OM = AA$[q5gh/e2 - (q5gh, - g,h)A2]  + A g h A i ,  

RN = AA$[q5gh + (q5ghx - gxh)A2]  +Aghe lA2 ,  

(2.6) 

(2.7) 

together with similar but longer explicit polynomial expressions for Ur and PL, which 
are not worth reproducing. (Recall that Ax? and A9 are defined in (1.6); a subscript x or 
y denotes a corresponding partial derivative.) Evidently, an inhomogeneous partial 
differential approximant can represent effectively multisingular scaling behaviour with 
an added background. The generalisation to more variables is obvious. 

From our present viewpoint the most important aspect of an inhomogeneous 
differential approximant is its behaviour in the vicinity of an anticipated singular point. 
Consider the single-variable approximants defined by (2.3): one expects to find a simple 
zero of the derivative coefficient QM(x) at x = xo. Then xo represents an estimate for 
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the singular point xc.  In the neighbourhood of xo one may construct the expansions 

U,(X) = uo+ Ub(x -xo)+O[(x -xo)2 ] ,  (2.8) 

PL(X) =Po+Pb(x -xo)+O[(x -xo)2 ] ,  (2.9) 
Q M ( x ) = Q ~ ( x  -x~)+~Q%(x-xo)~+O[(X-XO)~] .  (2.10) 

Then it is not hard to see (Baker and Hunter (1979) give some explicit details) that, in 
general, the representation (1.4) holds, with xo replacing xo  and with A(x)  and B(x)  
analytic in the neighbourhood of X O ,  while the exponent y is given by 

Y = -Po/Qb. (2.11) 

This is essentially the same result as for standard D log Pad6 approximants. If y should 
turn out to be an integer, the simple power law representation (1.4) may fail and special 
considerations are needed, as discussed by Baker and Hunter (1979). 

Baker and Hunter present integral expressions for A(x)  and B(x)  in terms of VJ, PL 
and QM; these may be found by solving (2.3) explicitly with the aid of an integrating 
factor. In the vicinity of xo,  however, we may express the background more simply as 

B(x)=Bo+Bb(x-xo)+.  , . , (2.12) 

with 

Bo = - uo/po, Bb (PbUo - Po Ub )/Po(Po- Qb). (2.13) 

These results may be found easily by substituting power series expansions about xo  into 
(2.3); similar but lengthier expressions are found for B%, etc. (In fact, the Baker- 
Hunter expression for B ( x )  is not easy to deal with in the vicinity of xo.)  

The amplitude factor may be written 

A ( x )  =Ao[l + C Z ~ ( X  - x O )  +. . .], (2.14) 

and substitution then yields ( y  being non-integral) 

a 1 = ( ~ b  + $YQ%)/Q~, (2.15) 

and similar expressions may be found for a2, etc. However, A. is necessarily given by 
an integral expression. Baker and Hunter give one formula, but it involves a singular 
integrand at the end of the range (which they handle by a special finite-difference 
approximation). An alternative expression which reduces the singularity by subtraction 
is 

where y and Bo are defined by (2.11) and (2.13), while 

Y(x)  = exp( -1' wL-l(w) dw) ,  Yo = Y(xo),  
0 VM-,(W) 

(2.16) 

(2.17) 

in which the polynomials VM-I and WL-I are defined by 

VM-i(x)= Q M ( x ) / ( x - x o ) ,  WL-l(X) = (PL(X)+ YVM-I(X))/(X -xo) .  (2.18) 

Because of the subtraction, the integrand in (2.16) varies only as (1 - w/x0)" + 0 as 
w + xo;  nonetheless, if y is small, some care may be needed to avoid loss of accuracy in 
evaluating the integral in this region. 
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Clearly, the evaluation of A. for a particular [J /L;  MI approximant is somewhat 
cumbersome. In practice it may well be easier and just as effective to estimate Ao, and 
thence the full function f ( x ) ,  by choosing a suitable background polynomial 6 ( x ) ,  which 
reproduces the 'best estimates' for Bo, B& etc, and forming direct Pad& approximants to 
the amplitude function 

A b ,  = (f(x)-6(x))(l  - x / x o ) y ,  (2.19) 

in which x o  and y are, likewise, best estimates. 
The analysis of the two-variable partial differential approximant defined by (2.5) in 

the multisingular region follows a similar route. As in the homogeneous case (Fisher 
and Kerr 19771, an estimate for the multisingular point (xc ,  y , )  is provided by a common 
zero (XO, y o )  of Q d x ,  y )  and RN(x, y).  The exponents y and q5 and the scaling axis 
slopes el and e2 may then be estimated in terms of Po=PL(xo,  yo)  and the gradients 
(X?M/~X)O, etc by the same expressions as in the homogeneous case. Finally the 
background contribution at the multisingular point is estimated by 

Bo = - UO/PO, with UO = U&, Y O ) ,  (2.20) 

in precise analogy to (2.13). 
It is appropriate to mention at this point that Baker and Hunter (1979) have 

established a number of general properties of the [J /L ;  M] and higher-order, single- 
variable inhomogeneous approximants. In particular, they show that the [L/L; L + 21 
approximant is invariant under the Euler transformation x = uw/(l + bw),  as are direct, 
diagonal or [L/L] Pad& approximants (e.g. Baker 1975). Incidentally, they also prove 
that higher-order differential approximants cannot exhibit Euler invariance. 

As in the construction of an ordinary Pad& approximant, the linear equations for the 
polynomial coefficients defining an approximant [JIL; MI or [J /L;  M, N] may either (i) 
be inconsistent, or (ii) have vanishing determinants. In the former case no approximant 
of the order sought exists; in the latter case one expects, nonetheless, to obtain a unique 
approximant, as happens for ordinary [ L / M ]  approximants where a common factor 
merely cancels from numerator and denominator. We have not succeeded in proving 
uniqueness, but in the Appendix we present a simple soluble example that demon- 
strates that uniqueness may be produced in a rather subtle way! 

Finally, it should be pointed out that, as in the case of ordinary Pad6 approximants, 
one may impose at essentially no cost in computational difficulty a specified zero in one 
or more of the polynomial coefficients. In particular, if the singular point xc is known 
(either exactly or with reasonable confidence), its value may be used to provide the 
additional coefficient equation 

M 

Q ~ ( x c ) =  1 x?qm =O.  (2.21) 
m = O  

Then one fewer expansion coefficient fi is needed to generate the corresponding 
'biased' [ J / L ;  MI approximants; conversely, for given {fi} one may examine approxi- 
mants of higher order. 

In some cases one might also wish to specify the value of the exponent y. The result 
(2.1 1) then yields the additional coefficient equation 

(2.22) 

which can be accommodated with equal ease. In other circumstances arising in practice 
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(e.g. Fisher 1974, Baker 1975), it may be desirable to fix y but leave xc  free. This is more 
difficult, since imposition of (2.21) and (2.22), with xc  a variable, leads to a nonlinear 
problem which, at very least, impedes computation. A more desperate stratagem 
would be to take M = L + 1 and impose PL(x)  = -yQi+l ( x )  as a polynomial identity 
(the prime, as above, denoting a derivative): this leaves linear equations for the 
coefficients but, since it imposes the same exponent y on all branch points of the 
approximant, is unlikely to lead to useful results in any but the most special circum- 
stances. 

Lastly, note from (2.13) that, given a value for xc, one may fix the background terms 
Bo, BA, etc, in addition, or as an alternative, to specifying y, and still retain linear 
equations for the coefficients. 

3. Some applications 

We now discuss some applications of the inhomogeneous differential approximants 
[J/L; MI which illustrate their power and reveal some of their limitations. Baker and 
Hunter (1979) have tested the approximants on a number of specially constructed 
model test functions exhibiting various explicitly known types of singularity. Our 
computations have been complementary in that we have studied examples arising in 
practice where the exact behaviour is not known but where other methods of series 
analysis have given information which may be regarded as reasonably reliable. 

3.1. Ising model spin-$ high-temperature susceptibility expansions 

As a first group of examples we have examined the series expansions for the suscep- 
tibilityX(= f ( x ) )  of spin-; Ising models on three-dimensional lattices (Sykes eta1 1972a) 
in powers of x = v = tanh(Jl/kBT), where J1 is the nearest-neighbour exchange coup- 
ling and T is the temperature. These series are rather well-behaved, and on the basis of 
ratio analysis (e.g. Fisher 1974) the critical-point values xc are known to a precision of 
about 1 part in lo4 or better; it is also believed that y = 1.250, with an uncertainty of, 
say, *0.004 for all the lattices (Sykes et a1 1972a). These ratio estimates are supported 
by standard D log Pad6 analysis. As an initial test, then, we studied the available series 
for the diamond, sc, BCC and FCC lattices (Gaunt and Sykes 1973, Sykes et a1 1972a) 
with J = 0,1, . . . , 5 to see if any significant changes in the xc and y estimates would be 
caused by allowance for a background term. Here, and in most of the following work, 
we examine, in the interests of economy, only inhomogeneous approximants that are 
‘near diagonal’ in the sense that M = L, L f 1. 

A feel for the general character of the results can be gained from figure 1 which 
represents a plot of the exponent ( y )  and background (Bo) estimates against the 
critical-point estimates, for most of the [J/L; MI approximants which use terms from 
order U in the BCC susceptibility series; included are the standard D log Pad6 
approximants [0/5; 51 and [0/7;  71, denoted by full circles, and the proper inhomo- 
geneous approximants [5/2; 21 and [5/4; 41. A number of approximants are missing 
from the plot since they are seriously ‘defective’, as often observed in ordinary Pad6 
approximation studies, in that they have spurious singularities on (or near) the real x 
axis closer to the origin than xc, which leads to poor estimates. For the susceptibility 
series such defects seem somewhat more abundant for the larger values of J. In other 
cases quite distinct approximants yield graphically identical estimates. 

to U 
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xc 

Figure 1. Estimates for the critical point x,, exponent y and background Bo for the spin-: 
king model BCC susceptibility series obtained from [.TIL; MI approximants for the values 
of J indicated by the various symbols: 0, J E 0 ; 0, J = 0; + , l ;  x , 2 ;  A, 3 ;  0,4;  0,5. (The 
broken and dotted lines serve merely to link estimates for Bo and y respectively.) The large 
crosses and arrow heads indicate the ratio estimates and their limits. 

Note, firstly, that the X ,  scale in figure 1 is much magnified: it hardly exceeds the 
range of the ratio estimates, namely xc  = 0.15612 f 3 (Sykes et a1 1972a). The accepted 
ratio estimates and their limits are shown by large crosses and arrow heads. Evidently, 
the estimates for J = 0, 1,2 , .  . . are rather more disperse than for J - 0 ;  but for the 

even for J 10, prefer a central estimate for y closer to 1.246 or 1.247). Secondly, it is 
clear that the marked correlation between the y and xc estimates, seen in Pade studies, 
is reproduced here. A similar correlation, but with rather more scatter, occurs in the 
(Bo, x,) estimates. The background estimates are numerically very small, but one might 
well take Bo = -0-02 f 7 as a best estimate for the BCC lattice. However, since y > 1 
(and A.  = l), this will make negligible numerical difference in overall approximants to 
~ ( v ) .  For the FCC, sc and diamond lattices small negative backgrounds of comparable 
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magnitude are also suggested. In summary, allowance for a background term in 
well-behaved series such as these leads to somewhat more disperse estimates for y and 
xc, but does not appear to degrade the overall precision. 

3.2. Transformation of initial coefficients 

In order to check the ability of the inhomogeneous approximants to handle changes in 
the first few terms of a series expansion, we have examined approximants to the 
modified series 

(3.1) 2 , f d ; d i a m ( U ) = X d i a m + 2 - 9 u = 3 - 5 u + 1 2 u  +. 3 

~ s c ( u ) = ~ s c - 1 + 5 u = 0 + 1 1 v + 3 0 u 2 + . .  . )  (3.2) 
,fBCC(u)=XBCC+2+7u = 3 + 1 5 ~ + 5 6 ~ * + .  . . , (3.3) 

for J = 0 and J = 0, 1,2.  As anticipated, the accuracy of the lower-order D log Pad6 
approximants is seriously disturbed by these changes. However, for the sc lattice, 
where the expected change in background in the critical region is only about 0.09, the 
terms of order U l6 and U l7 still yield reasonably good estimates for x c  and y. 

For the diamond lattice the J = 0 and J = 1 approximants yield xc  to a precision 
reduced by a factor of about 10 and suggest exponents of around 1.20 and 1.16 with 
uncertainties of *0-03. However, approximants with J = 1 and 2, which can faithfully 
represent the added terms, lead to considerably improved estimates for xc  (although not 
so precise or so consistent as for the original series). Likewise, the exponent estimates 
now lie in the vicinity 1.23 to 1.24. This is a significant improvement, even though the 
quality of the estimates remains somewhat degraded relative to the original series. 

The simple D log Pad6 estimates for the modified BCC series yield critical points 
with a precision of only 3 in lo3 (compared with 2 in lo4 from ratio estimates) and 
suggest the high values y = 1.28 to 1-35. In this case good accuracy is restored by going 
to any of the inhomogeneous approximants with J = 0, 1 or 2. The background now 
expected for the modified series is &, = 2 + 7u ,  - 0.02 = 3.07. As is clear from table 1, 
all the higher-order inhomogeneous approximants are successful in generating this 
relatively large value to within a precision of about k0.2. 

3.3. Specific heat expansions for the spin-4 Ising model 

The specific heats C(u) of three-dimensional Ising models at high temperature diverge 
only weakly, with exponent y = a = t ,  and ratio analysis indicates they have significant 

Table 1. Estimates of the critical-point background term Bo for the BCC spin-4 Ising 
susceptibility expansion modified as in equation (3.3). The expected value is l?00.=3.07. 

[0/5; 61 W 6 ;  51 [0/6; 61 1017; 51 ~ 6 ;  71 [0/7 ; 61 

[1/5; 51 [1/5; 61 [1/6; 51 [1/6; 61 [1/5; 71 [1/7; 51 

3.202 3.002 3.203 2.982 3.138 3.148 

3.299 3-200 3.359 3,128 3.128 3.169 

1214; 51 ~ 5 ;  41 W 5 ;  51 1214; 61 [2/5; 61 [2/6; 51 
3.304 3.308 3.303 3-302 3.075 3.228 
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negative backgrounds in the critical region (Sykes et a1 1972b). The D log Pade 
approach is very poor in these circumstances, even for a long series, as is clear from the 
first column of table 2. On the other hand, table 2 reveals that inhomogeneous 
approximants give a far better account of the singular behaviour once a reasonably long 
series is available. (Note that on standard Ising model conventions the terms fo and f l u  
vanish identically in the specific heat series; we have analysed both the series C ( u ) / u 2  
and C(u), but always quote the values of Bo which refer to C(u).)  The estimates for Bo 
corresponding to the data in table 2 (and other inhomogeneous approximants not 
explicitly listed) suggest values in the range -1.0 to -1.4. 

Table 2. Estimates for critical point U, and exponent a for the high-temperature specific 
heat expansion of the FCC king lattice obtained from selected approximants [J/L; MI. 
Accepted estimates are v,=0~10174 and a ~ 0 . 1 2 5 .  

~ ~~~~~ 

[J/L;MI U, a [J/L;Ml U, a [J/L;MI U, <I 

[0/2;  21 0.12024 0.973 [0/2; 11 0.11309 0.670 [ l / l ;  11 0.11174 0.405 
[0/3;  31 0.12425 1.012 [0/3; 31 0.10204 0.146 [1/2; 21 0.12310 0.961 
[0/4; 41 0.10539 0.594 [0/4; 41 0.10260 0.264 [1/3; 21 0.10793 0.811 
[0/5;  51 0.10434 0.550 [0/5; 51 0.10185 0.135 [1/4; 41 0.10224 0.206 
[0/6; 61 0.10218 0.393 [0/5;6] 0.10178 0.121 [1/5; 51 0.10176 0.122 

It is generally agreed that the most precise estimates for the critical points of Ising 
models are obtained from analysis of the high-temperature susceptibility series. On this 
basis we may accept, in particular, uc = 0.15612 f 3 for the BCC lattice (Sykes, Gaunt er 
a/ 1972) and use this to impose the value of xc  = vc on the inhomogeneous approxi- 
mants, as explained in (2.21) above. The BCC lattice is appropriate as a test case, since 
C(u) has an expansion in even powers and only eight non-zero coefficients are known. 
We have performed the corresponding calculations for the sc and FCC lattices with quite 
similar results. Figure 2 shows how the exponent estimates for fixed uc behave as a 
function of the total number of coefficients in the series which are used. Evidently the 
standard D log Pad6 approximants still do very badly. With J = 0 the inhomogeneous 
approximants indicate a far more rapid approach to a limit. For J 2 1 even low-order 
approximants suggest exponent values in the range 0.11 to 0.14, and the overall picture 
clearly confirms the ratio estimate a ~ 0 . 1 2 5 .  The sc data indicate a similar value, 
although the FCC data tend to indicate a somewhat lower value of about 0.1 15. Within 
the uncertainty limits, however, the exponent seems to be universal for all the 
three-dimensional lattices, as concluded in the ratio analysis (Sykes et a1 1972b). 

We have also checked the sensitivity of the exponent estimates to the choice of uc 
imposed. In the BCC lattice a change from uc = 0.15612 to uc = 0.15610 decreased the 
estimates for a by about 0.0015; this is quite in line with the sensitivity observed in 
normal D log Pad6 analysis. The corresponding changes in the estimates of Bo were of 
order -0.01 to -0.03, as might reasonably have been anticipated. As regards the 
actual value of the background term, figure 3 shows, for most of the approximants 
appearing in figure 2, the estimates for Bo associated with a particular exponent 
estimate. A strong and remarkably sharp correlation is observed. The ratio estimates 
a = 0.125, Bo= -1.248 (Sykes et a1 1972b) are shown by the large cross and arrow 
heads: it is surprising, given a, how closely the ratio estimate for Bo coincides with that 
which would be drawn from the evidence of the inhomogeneous approximants. The 
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n 

Figure 2. Estimates for the specific heat exponent a for the spin-4 ISing BCC model obtained 
from [J/L;  MI approximants with imposed critical point U, = 0.15612 for various values of J 
as a function of n, the power of U of the highest-order coefficient utilised: 0, J =  0 ;  
0, J = 0; +, 1; x, 2; A, 3. The preferred ratio estimate a = Q is indicated on the right. 

same coincidence is found for the FCC and sc lattices and strengthens one's confidence 
in the [J/L;  MI analysis. 

3.4. Antiferromagnetic spin- f Ising susceptibilities 

Whereas the susceptibility of an Ising ferromagnet on a BCC or sc lattice exhibits a 
strong singularity of the form (1.4) with an exponent y = 1.25, the corresponding 
antiferromagnet (obtained by changing the sign of the nearest-neighbour coupling 
energy J1)  is expected to display only the comparatively mild, non-divergent singular 
behaviour 

as U -+ -vc, with, in fact, -yo = 1 -a = 0.88 (see e.g. Sykes et a1 1972a); in other words, 
the exponent y is strongly negative, and the original background term Bo thus becomes 
the dominant critical contribution xC. It is quite evident that direct or D log Pad6 
approximants can give almost no significant information about such weak critical 
behaviour. Furthermore, since the signs of the appropriate series expansion coefficients 
now oscillate, the standard ratio analysis techniques are also not applicable in any 
straightforward way. Nonetheless, one may attempt to analyse the situation with the 
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Figure 3. Variation of background estimates with exponent estimates using [ J / L ;  MI 
approximants with imposed critical point as in figure 2. The symbols denoting the valuesof J 
are the same as in figures 1 and 2; the large cross and arrow heads denote the ratio estimates. 

aid of inhomogeneous approximants. Indeed, it suffices merely to examine the 
[J/L;  MI approximants previously calculated for the king ferromagnetic susceptibility 
expansions, at negative, real values of the variable x = U = tanh(Jl/kBT). 

Now one knows on theoretical grounds that the antiferromagnetic singularity (on 
the sc and BCC lattices) must occur at U, = -uC, as implied in (3.4). Thus, as illustrated 
in the analysis of the specific heats just described, optimal estimates for -yo and for 
Bo E xc should be obtained by imposing this value on the approximants. However, in 
order to test the ability of the [J/L;  MI approximants to detect such weak singularities, 
we report only on the results for ‘unbiased’ or ‘free’ approximants which themselves 
yield indications of the position of the singularity. 

The results are, in fact, quite encouraging: thus for the sc lattice we find that the 
higher-order approximants for J = 1 , 2 , 3 , 4  and 5 rather consistently indicate a singular 
point in the region v i  = - -uC(l  i E ) ,  with E = 0.013. Furthermore, as in figure 1, there is 
a strong monotonic correlation between the estimates for U, and for the corresponding 
exponent estimates, which range from -yo=0.6 to 1 .1 ,  and with the background 
estimates Bo, which vary only over the comparatively small range from 0.325 to 0.350. 
However, if the preferred critical-point estimate U; = -uc = 0-21817 is adopted, one 
would conclude that -yo = 0.86 f 3 and xc = Bo = 0.3392 f 8. These values compare 
surprisingly well with the theoretically expected value -yo zz 1 -a  = 0.875 f 15 = f and 
with the estimate xC-0.3394 obtained by Sykes er a1 (1972a), who do, in fact, utilise 
both the assumptions U, = -uc and - y = 1 -a  = i. Comparable results have been 
obtained for the antiferromagnetic behaviour of the BCC and diamond lattices. 

We conclude, therefore, that the inhomogeneous approximants are capable of 
resolving rather weak, non-divergent singularities with reasonable reliability. In a 
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practical case, however, having detected such a singularity, one would probably prefer 
to analyse primarily the derivative series expansion in which the singularity should 
appear more strongly. Nevertheless, the ability of the inhomogeneous approximants to 
provide an indication of a weak singularity is clearly a valuable feature. 

3.5. Susceptibilities of the spin-a Heisenberg, X Y  and Ising models 

Our current numerical understanding of thermodynamic bicritical points is largely 
based on analyses of the high-temperature series for the susceptibility of the spin-a 
anisotropic Heisenberg model which includes the spin-a XY and Ising models as 
special limits (see Pfeuty er a1 1974). The available series are not very long and, 
although susceptible to ratio analysis, are not as smooth or as well-behaved as the spin-4 
Ising expansions (Pfeuty er a1 1974, Camp and van Dyke 1975). Accordingly, we felt it 
worthwhile to analyse the expansionsfor the sc, BCC and FCC lattices using the [J/L; M] 
approximants. 

Our findings can be expressed conveniently by describing the plots of y and Bo 
estimates against xc estimates as in figure 1. As there, rather clear and consistent loci, 
y = r ( x c )  and Bo=B(xc),  emerge. However, by contrast with the spin-$ data, the 
standard D log Pad6 estimates for y are spread over a wide range: thus, taking the 
S = a  FCC king series as an exemplar, one finds y values of from 1.18 to 1.24. 
Conversely, the corresponding approximants for J = 0 and, even more so, those for 
J 3 1 yield rather well-clustered estimates, mainly in the range y = 1.215 to 1.235. On 
the basis of these data alone, one would probably conclude y = 1-225 *7. At the same 
time, a rather precise value of Bo, namely -0.13, is indicated for the central value of y 
(and of xc); however, uncertainties in Bo of ztO.05 correlate with the range of 
uncertainty in y (and xc) .  

The estimate for y found here, and similarly the estimates for the X Y  and 
Heisenberg S = a models, agree closely with those obtained by ratio analyses (see e.g. 
Pfeuty er a1 1974). In each case, however, a significant background term is found, in 
contrast to the S = $ susceptibility functions. On the other hand, the discrepancy 
between the Ising spin-$estimate of y = 1.25 and the Ising spin-a estimates of y = 1.22 
to 1.23 is not resolved by the use of inhomogeneous approximants. The hypothesis of 
critical-exponent universality suggests these values should be identical; however, the 
true reason for this difference (real or apparent as it may be) is not fully understood. 
Nevertheless, it has been suspected as being an artefact caused by the presence of 
confluent singularities. When y 3 1 such confluent singularities cannot be well approxi- 
mated by inhomogeneous approximants, so it is not really surprising that their use sheds 
no special new light on this question. However, the data from the [J/L; MI studies 
strongly indicate that an optimal representation of the s p i n a  susceptibilities should 
allow for a background contribution. 

3.6. The Yang-Lee edge singularity 

It has recently been observed (Baker and Moussa 1978, Fisher 1978) that the nature of 
the singularity at the edge of the Yang-Lee distribution of zeros in the complex 
magnetic field plane of an king ferromagnet can be understood in the high-temperature 
limit by studying the activity expansions of a gas of hard dimers on the corresponding 
lattice. The resulting series expansions for two- and three-dimensional lattices display 
considerable curvature in ratio analyses which make them difficult to extrapolate with 
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confidence. The standard D log Pad6 techniques similarly give disperse and non- 
convergent results. It has been found, however, that rather consistent and apparently 
reliable estimates are given by [J/L; MI approximants. Furthermore, the Bethe lattice 
series, for which the exact behaviour is known (Baker and Moussa 1978), prove very 
troublesome for the standard techniques, but are remarkably well represented by 
inhomogeneous approximants. The detailed results of this study will be reported 
elsewhere (Kurtze and Fisher, 1979). 

3.7. Low-temperature Ising model series 

Baker and Hunter (1979) have applied inhomogeneous differential approximants to 
re-examine the exponent of divergence, y', of the low-temperature susceptibilities of 
three-dimensional Ising lattices. Standard D log Pad6 analysis tends to suggest 7' = 
1.30, whereas the scaling hypothesis leads one to expect the same exponent as for the 
high-temperature expansions, namely y = 1.25. The low-temperature expansions are 
notoriously difficult to analyse, in that there are strong, interfering singularities in the 
complex plane (the number depending on the lattice) which lie closer to the origin than 
the real, physical singularity. Nevertheless, with the aid of [J/L; MI approximants, 
Baker and Hunter obtained quite convincing evidence that, when the series expansion 
is long enough relative to the number of interfering singularities, the BCC lattice being 
the best case, the low-temperature exponent y' approaches the expected value 1.25. 

We have elected to examine the corresponding series for the specific heats (Sykes et 
a1 1965, 1973); in particular, we have studied the series for the FCC lattice which are 
long, but irregular: 

C ' ; ( ~ ) = 3 6 ~ ~ + 7 2 6 ~ " - 9 3 6 ~ ' ~ + 1 8 0 0 ~ ' ~ + 1 0 7 5 2 ~ ' ~ - .  . . . (3.5) 
Here C' is the reduced specific heat, while x = exp(-4Jl/kBT) is the natural low- 
temperature variable; the last available term is +47 823 031 200x40. The expected 
exponent of divergence is small, namely a '  = 0.125. D log Pad6 approximants are quite 
disperse and suggest an exponent of 0.25 f 0.08 and, correspondingly, a critical point 
about 0.7% higher than believed correct (on the basis of the high-temperature 
expansions). The inhomogeneous approximants for J = 0, 1, 2 and 3 improve the 
situation, but not dramatically. They are still quite disperse, suggesting a '  ̂ I 0.21 * 0.07 
and a critical point high by, perhaps, only 0.5%. If the value of x c  is imposed, the D log 
Pad6 approximants yield a' 3 0.22 f 0.02; the inhomogeneous approximants are 
spread more widely, and correlated strongly with corresponding estimates for the 
background Bo. Plausible estimates might be a'=0*19zt0*05 and Bo- -2.0* 2.5. 
The expected exponent value, a' 3 0.125, is not ruled out, but rather few approximants 
give estimates in that region. Nevertheless, if, as explained in § 2, both the value of xc  
and of a were imposed, the inhomogeneous differential approximants should yield 
useful approximations to the specific heat functions themselves. 

4. summary 

We feel the range of applications discussed above make it clear that the inhomogeneous 
differential approximants [J/L; M ] f  are useful and practicable tools for series analysis 
that should be used in most circumstances where the D log Pad6 technique alone might 
have been employed in the past. In many cases where there is a significant background 
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contribution in the region of the expected branch-point singularity, the [J /L;  MIf 
approximants will probably yield additional and more reliable information. In other 
cases they may merely confirm that the assumption of a negligible background, i.e. a 
purely factoring branch point, is reasonably well justified. Finally, the example of the 
low-temperature Ising specific heat series-probably among the most difficult series to 
analyse reliably-demonstrates that the inhomogeneous approximants are not a uni- 
versal panacea. To expect otherwise, however, would be naive! 
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Appendix. Examples illustrating uniqueness 

Suppose the equations specifying the polynomials U.(x) ,  PL(x) and Q M ( x )  in the 
[J /L;  MI approximant are indeterminate so there are many solutions parametrised by a 
number of arbitrary constants, say c1, c2, . . . , c,. One obvious mechanism by which the 
approximant itself could, nonetheless, be unique is factorisation uniqueness, in which 

(All 
= V;-(x)Zr(x; {Ck}), PL(X) = & ( x ) Z 1 ( x ;  {Ck}), 

= & t b ) Z r ( ~ ;  {Ck}), 

where the reduced polynomials V;-(x), FL(x) and &(x) with J’= J-I, etc are 
independent of the {ck} .  Evidently, the arbitrary polynomial factor Z r ( x  ; { c k } )  cancels 
to leave a unique differential equation corresponding to the lower-order approximant 
[ f /L;  Q]. Provided &(O) # 0, the condition F(0) =fo then yields a unique approxi- 
mant. This is the mechanism of uniqueness in ordinary [L/M] Pad6 approximants. A 
concrete example is provided by 

f ( x )  = 2 ex - I = 1 + 2x + xz + $x3  + . . . . (A2) 

The five equations for the parameters uo, u1, P O =  1, p l ,  40 and 41 for the [1/1;1] 
approximant yield 

U,(x) = 1 +ClX, Pl(X) = 1 +c1x, Q l ( x )  = 1 + C ~ X .  (A31 
Thus the factor l + c l x  cancels from (2.3), and the [1/1;1] approximant reduces 
identically to the [O/O;O] approximant with U0 = P o  = Qo = 1; this actually reproduces 
(A2) exactly. 

However, there is at least one other distinct mechanism which might be termed 
integral uniqueness. As an illustration, consider the [1/0; 1) approximant to 

(A41 f ( x )  =eX5+2x = 1 +2x + x 5 + .  . . , 
for which, using the expansion to order x4, one finds 

Ul(X) = c1+ CZX, Po= 1, Ql(x) = $(l + ~ 1 )  +$(1+ c&, (A51 
so that there is certainly no common polynomial factor! The general solution of (2.3) 
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may then be written 

F ( x )  = 1 + 2x + Co(Q1(x))2"'"1', 

where CO is the arbitrary constant of integration. Provided q o = $ ( l + c l )  does not 
vanish, the only solution satisfying F(0)  = fo = 1 is obtained for CO = 0. Thus the 
[1/0; 11 approximant is, in fact, unique and represents f(x) correctly to O(x4) as it 
should. 
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